PREALBWIHMME
 with

Finchite and Firmyin

Ron Larson

GRAPHS OF PARENT FUNCTIONS

Linear Function

$$
f(x)=m x+b
$$

Domain: $(-\infty, \infty)$
Range $(m \neq 0):(-\infty, \infty)$
x-intercept: $(-b / m, 0)$
y-intercept: $(0, b)$
Increasing when $m>0$
Decreasing when $m<0$

Greatest Integer Function

$f(x)=\llbracket x \rrbracket$

Domain: $(-\infty, \infty)$
Range: the set of integers
x-intercepts: in the interval $[0,1)$ y-intercept: $(0,0)$
Constant between each pair of consecutive integers
Jumps vertically one unit at each integer value

Absolute Value Function

$f(x)=|x|= \begin{cases}x, & x \geq 0 \\ -x, & x<0\end{cases}$

Domain: $(-\infty, \infty)$
Range: $[0, \infty)$
Intercept: $(0,0)$
Decreasing on $(-\infty, 0)$
Increasing on $(0, \infty)$
Even function y-axis symmetry

Quadratic (Squaring) Function

$f(x)=a x^{2}$

Domain: $(-\infty, \infty)$
Range $(a>0)$: $[0, \infty)$
Range $(a<0):(-\infty, 0]$
Intercept: $(0,0)$
Decreasing on $(-\infty, 0)$ for $a>0$
Increasing on $(0, \infty)$ for $a>0$
Increasing on $(-\infty, 0)$ for $a<0$
Decreasing on $(0, \infty)$ for $a<0$
Even function
y-axis symmetry
Relative minimum $(a>0)$, relative maximum $(a<0)$, or vertex: $(0,0)$

Square Root Function

$$
f(x)=\sqrt{x}
$$

Domain: $[0, \infty)$
Range: $[0, \infty)$
Intercept: $(0,0)$
Increasing on $(0, \infty)$

Cubic Function

$f(x)=x^{3}$

Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$
Intercept: $(0,0)$
Increasing on $(-\infty, \infty)$
Odd function
Origin symmetry

Rational (Reciprocal) Function
$f(x)=\frac{1}{x}$

Domain: $(-\infty, 0) \cup(0, \infty)$
Range: $(-\infty, 0) \cup(0, \infty)$
No intercepts
Decreasing on $(-\infty, 0)$ and $(0, \infty)$
Odd function
Origin symmetry
Vertical asymptote: y-axis
Horizontal asymptote: x-axis

Sine Function

$f(x)=\sin x$

Domain: $(-\infty, \infty)$
Range: $[-1,1$]
Period: 2π
x-intercepts: $(n \pi, 0)$
y-intercept: $(0,0)$
Odd function
Origin symmetry

Exponential Function

$$
f(x)=a^{x}, a>1
$$

Domain: $(-\infty, \infty)$
Range: $(0, \infty)$
Intercept: $(0,1)$
Increasing on $(-\infty, \infty)$

$$
\text { for } f(x)=a^{x}
$$

Decreasing on $(-\infty, \infty)$
for $f(x)=a^{-x}$
Horizontal asymptote: x-axis Continuous

Cosine Function

$f(x)=\cos x$

Domain: $(-\infty, \infty)$
Range: $[-1,1]$
Period: 2π
x-intercepts: $\left(\frac{\pi}{2}+n \pi, 0\right)$
y-intercept: $(0,1)$
Even function
y-axis symmetry

Logarithmic Function

$f(x)=\log _{a} x, a>1$

Domain: $(0, \infty)$
Range: $(-\infty, \infty)$
Intercept: $(1,0)$
Increasing on $(0, \infty)$
Vertical asymptote: y-axis
Continuous
Reflection of graph of $f(x)=a^{x}$
in the line $y=x$

Tangent Function

$f(x)=\tan x$

Domain: all $x \neq \frac{\pi}{2}+n \pi$
Range: $(-\infty, \infty)$
Period: π
x-intercepts: $(n \pi, 0)$
y-intercept: $(0,0)$
Vertical asymptotes:

$$
x=\frac{\pi}{2}+n \pi
$$

Odd function Origin symmetry

Cosecant Function

$f(x)=\csc x$

Domain: all $x \neq n \pi$
Range: $(-\infty,-1] \cup[1, \infty)$
Period: 2π
No intercepts
Vertical asymptotes: $x=n \pi$
Odd function
Origin symmetry

Inverse Sine Function

$f(x)=\arcsin x$

Domain: $[-1,1]$
Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Intercept: $(0,0)$
Odd function
Origin symmetry

Secant Function
$f(x)=\sec x$

Domain: all $x \neq \frac{\pi}{2}+n \pi$
Range: $(-\infty,-1] \cup[1, \infty)$
Period: 2π
y-intercept: $(0,1)$
Vertical asymptotes:

$$
x=\frac{\pi}{2}+n \pi
$$

Even function y-axis symmetry

Inverse Cosine Function

$f(x)=\arccos x$

Domain: $[-1,1]$
Range: $[0, \pi]$
y-intercept: $\left(0, \frac{\pi}{2}\right)$

Cotangent Function

$f(x)=\cot x$

Domain: all $x \neq n \pi$
Range: $(-\infty, \infty)$
Period: π
x-intercepts: $\left(\frac{\pi}{2}+n \pi, 0\right)$
Vertical asymptotes: $x=n \pi$
Odd function
Origin symmetry

Inverse Tangent Function
$f(x)=\arctan x$

Domain: $(-\infty, \infty)$
Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Intercept: $(0,0)$
Horizontal asymptotes:

$$
y= \pm \frac{\pi}{2}
$$

Odd function
Origin symmetry

PRECALC wir LIMITS with 4E Calchint ${ }^{\oplus}$ and Calcyiew ${ }^{\text {® }}$

Ron Larson
The Pennsylvania State University
The Behrend College
\section*{With the assistance of David C. Falvo}
The Pennsylvania State University The Behrend College

Precalc with Limits
 with CalcChat and CalcView
 Fourth Edition
 Ron Larson

Product Director: Terry Boyle
Product Manager: Gary Whalen
Senior Content Developer: Stacy Green
Associate Content Developer: Samantha Lugtu
Product Assistant: Katharine Werring
Media Developer: Lynh Pham
Marketing Manager: Ryan Ahern
Content Project Manager: Jennifer Risden
Manufacturing Planner: Doug Bertke
Production Service: Larson Texts, Inc.
Photo Researcher: Lumina Datamatics
Text Researcher: Lumina Datamatics
Illustrator: Larson Texts, Inc.
Text Designer: Larson Texts, Inc.
Cover Designer: Larson Texts, Inc.
Front Cover Image: betibup33/Shutterstock.com Back Cover Image: Dragonfly22/Shutterstock.com Compositor: Larson Texts, Inc.

© 2018, 2014 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced or distributed in any form or by any means, except as permitted by U.S. copyright law, without the prior written permission of the copyright owner.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions.

Further permissions questions can be emailed to permissionrequest@cengage.com.

Library of Congress Control Number: 2016945349
Student Edition:
ISBN: 978-1-337-27118-9

Loose-leaf Edition:
ISBN: 978-1-337-29159-O

Cengage Learning

20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with employees residing in nearly 40 different countries and sales in more than 125 countries around the world. Find your local representative at www.cengage.com.

Cengage Learning products are represented in Canada by Nelson Education, Ltd

To learn more about Cengage Learning Solutions, visit www.cengage.com.
Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com.

QR Code is a registered trademark of Denso Wave Incorporated
$1 \triangleright$ Functions and Their Graphs 1
1.1 Rectangular Coordinates 2
1.2 Graphs of Equations 11
1.3 Linear Equations in Two Variables 22
1.4 Functions 35
1.5 Analyzing Graphs of Functions 49
1.6 A Library of Parent Functions 60
1.7 Transformations of Functions 67
1.8 Combinations of Functions: Composite Functions 76
1.9 Inverse Functions 84
1.10 Mathematical Modeling and Variation 93
Chapter Summary 104
Review Exercises 106
Chapter Test 109
Proofs in Mathematics 110
P.S. Problem Solving 111
$2 \triangleright$ Polynomial and Rational Functions 113
2.1 Quadratic Functions and Models 114
2.2 Polynomial Functions of Higher Degree 123
2.3 Polynomial and Synthetic Division 136
2.4 Complex Numbers 145
2.5 Zeros of Polynomial Functions 152
2.6 Rational Functions 166
2.7 Nonlinear Inequalities 178
Chapter Summary 188
Review Exercises 190
Chapter Test 192
Proofs in Mathematics 193
P.S. Problem Solving 195
$3 \triangleright$ Exponential and Logarithmic Functions 197
3.1 Exponential Functions and Their Graphs 198
3.2 Logarithmic Functions and Their Graphs 209
3.3 Properties of Logarithms 219
3.4 Exponential and Logarithmic Equations 226
3.5 Exponential and Logarithmic Models 236
Chapter Summary 248
Review Exercises 250
Chapter Test 253
Cumulative Test for Chapters 1-3 254
Proofs in Mathematics 256
P.S. Problem Solving 257
$4 \triangleright$ Trigonometry 259
4.1 Radian and Degree Measure 260
4.2 Trigonometric Functions: The Unit Circle 270
4.3 Right Triangle Trigonometry 277
4.4 Trigonometric Functions of Any Angle 288
4.5 Graphs of Sine and Cosine Functions 297
4.6 Graphs of Other Trigonometric Functions 308
4.7 Inverse Trigonometric Functions 318
4.8 Applications and Models 328
Chapter Summary 338
Review Exercises 340
Chapter Test 343
Proofs in Mathematics 344
P.S. Problem Solving 345
$5 \triangleright$ Analytic Trigonometry 347
5.1 Using Fundamental Identities 348
5.2 Verifying Trigonometric Identities 355
5.3 Solving Trigonometric Equations 362
5.4 Sum and Difference Formulas 374
5.5 Multiple-Angle and Product-to-Sum Formulas 381
Chapter Summary 390
Review Exercises 392
Chapter Test 394
Proofs in Mathematics 395
P.S. Problem Solving 397
$6 \triangleright$ Additional Topics in Trigonometery 399
6.1 Law of Sines 400
6.2 Law of Cosines 409
6.3 Vectors in the Plane 416
6.4 Vectors and Dot Products 429
6.5 The Complex Plane 438
6.6 Trigonometric Form of a Complex Number 445
Chapter Summary 454
Review Exercises 456
Chapter Test 459
Cumulative Test for Chapters 4-6 460
Proofs in Mathematics 462
P.S. Problem Solving 465
$7 \triangleright$ Systems of Equations and Inequalities 467
7.1 Linear and Nonlinear Systems of Equations 468
7.2 Two-Variable Linear Systems 478
7.3 Multivariable Linear Systems 490
7.4 Partial Fractions 502
7.5 Systems of Inequalities 510
7.6 Linear Programming 520
Chapter Summary 529
Review Exercises 531
Chapter Test 535
Proofs in Mathematics 536
P.S. Problem Solving 537
$8 \triangleright$ Matrices and Determinants539
8.1 Matrices and Systems of Equations 540
8.2 Operations with Matrices 553
8.3 The Inverse of a Square Matrix 568
8.4 The Determinant of a Square Matrix 577
8.5 Applications of Matrices and Determinants 585
Chapter Summary 598
Review Exercises 600
Chapter Test 604
Proofs in Mathematics 605
P.S. Problem Solving 607
$9 \triangleright$ Sequences, Series, and Probability 609
9.1 Sequences and Series 610
9.2 Arithmetic Sequences and Partial Sums 620
9.3 Geometric Sequences and Series 629
9.4 Mathematical Induction 638
9.5 The Binomial Theorem 648
9.6 Counting Principles 656
9.7 Probability 666
Chapter Summary 678
Review Exercises 680
Chapter Test 683
Cumulative Test for Chapters 7-9 684
Proofs in Mathematics 686
P.S. Problem Solving 689
$10 \triangleright$ Topics in Analytic Geometry 691
10.1 Lines 692
10.2 Introduction to Conics: Parabolas 699
10.3 Ellipses 708
10.4 Hyperbolas 717
10.5 Rotation of Conics 727
10.6 Parametric Equations 735
10.7 Polar Coordinates 745
10.8 Graphs of Polar Equations 751
10.9 Polar Equations of Conics 759
Chapter Summary 766
Review Exercises 768
Chapter Test 771
Proofs in Mathematics 772
P.S. Problem Solving 775
$11 \triangleright$ Analytic Geometry in Three Dimensions 777
11.1 The Three-Dimensional Coordinate System 778
11.2 Vectors in Space 785
11.3 The Cross Product of Two Vectors 792
11.4 Lines and Planes in Space 799
Chapter Summary 808
Review Exercises 810
Chapter Test 812
Proofs in Mathematics 813
P.S. Problem Solving 815
12 Limits and an Introduction to Calculus 817
12.1 Introduction to Limits 818
12.2 Techniques for Evaluating Limits 829
12.3 The Tangent Line Problem 839
12.4 Limits at Infinity and Limits of Sequences 849
12.5 The Area Problem 858
Chapter Summary 866
Review Exercises 868
Chapter Test 871
Cumulative Test for Chapters 10-12 872
Proofs in Mathematics 874
P.S. Problem Solving 875
$13 \triangleright$ Concepts in Statistics 877
13.1 Representing Data 878
13.2 Analyzing Data 885
13.3 Modeling Data 897
Chapter Summary 904
Review Exercises 906
Chapter Test 908
Proofs in Mathematics 909
P.S. Problem Solving 910

- Appendix A
Review of Fundamental Concepts of Algebra
A. 1 Real Numbers and Their Properties A1
A. 2 Exponents and Radicals A13
A. 3 Polynomials and Factoring A25
A. 4 Rational Expressions A35
A. 5 Solving Equations A45
A. 6 Linear Inequalities in One Variable A58
A. 7 Errors and the Algebra of Calculus A67
Answers to Odd-Numbered Exercises and Tests A75
Index A195Index of Applications (online)**Available at the text-specific website www.cengagebrain.com

Preface

Welcome to Precalc with Limits, Fourth Edition. We are excited to offer you a new edition with even more resources that will help you understand and master precalculus with limits. This textbook includes features and resources that continue to make Precalc with Limits a valuable learning tool for students and a trustworthy teaching tool for instructors.

Precalc with Limits provides the clear instruction, precise mathematics, and thorough coverage that you expect for your course. Additionally, this new edition provides you with free access to three companion websites:

- CalcView.com-video solutions to selected exercises
- CalcChat.com-worked-out solutions to odd-numbered exercises and access to online tutors
- LarsonPrecalculus.com-companion website with resources to supplement your learning

These websites will help enhance and reinforce your understanding of the material presented in this text and prepare you for future mathematics courses. CalcView ${ }^{\circledR}$ and CalcChat ${ }^{\circledR}$ are also available as free mobile apps.

Features

NEW 兰 Calcyiew ${ }^{\circ}$

The website CalcView.com contains video solutions of selected exercises. Watch instructors progress step-by-step through solutions, providing guidance to help you solve the exercises. The CalcView mobile app is available for free at the Apple ${ }^{\circledR}$ App Store ${ }^{\circledR}$ or Google Play ${ }^{\text {TM }}$ store. The app features an embedded QR Code ${ }^{\circledR}$ reader that can be used to scan the on-page
 access the videos at CalcView.com.

In each exercise set, be sure to notice the reference to CalcChat.com. This website provides free step-by-step solutions to all odd-numbered exercises in many of our textbooks. Additionally, you can chat with a tutor, at no charge, during the hours posted at the site. For over 14 years, hundreds of thousands of students have visited this site for help. The CalcChat mobile app is also available as a free download at the Apple ${ }^{\circledR}$ App Store ${ }^{\circledR}$ or Google Play ${ }^{\text {TM }}$ store and features an embedded QR Code ${ }^{\circledR}$ reader.

[^0]
REVISED LarsonPrecalculus.com

All companion website features have been updated based on this revision, plus we have added a new Collaborative Project feature. Access to these features is free. You can view and listen to worked-out solutions of Checkpoint problems in English or Spanish, explore examples, download data sets, watch lesson videos, and much more.

NEW Collaborative Project

You can find these extended group projects at LarsonPrecalculus.com. Check your understanding of the chapter concepts by solving in-depth, real-life problems. These collaborative projects provide an interesting and engaging way for you and other
 students to work together and investigate ideas.

REVISED Exercise Sets

The exercise sets have been carefully and extensively examined to ensure they are rigorous and relevant, and include topics our users have suggested. The exercises have been reorganized and titled so you can better see the connections between examples and exercises. Multi-step, real-life exercises reinforce problem-solving skills and mastery of concepts by giving you the opportunity to apply the concepts in real-life situations. Error Analysis exercises have been added throughout the text to help you identify common mistakes.

Table of Contents Changes

Based on market research and feedback from users, Section 6.5, The Complex Plane, has been added. In addition, examples on finding the magnitude of a scalar multiple (Section 6.3), multiplying in the complex plane (Section 6.6), using matrices to transform vectors (Section 8.2), and further applications of 2×2 matrices (Section 8.5) have been added.

Chapter Opener

Each Chapter Opener highlights real-life applications used in the examples and exercises.

Section Objectives

A bulleted list of learning objectives provides you the opportunity to preview what will be presented in the upcoming section.

```
EXARAPLE G Finding the Domain of a Composite Function
Find the domain of f\circg for the functions
    f(x)=\mp@subsup{x}{}{2}-9 and g(x)=\sqrt{}{9-\mp@subsup{x}{}{2}}.
Algebraic Solution
Find the composition of the functions.
    (f\circg)(x)=f(g(x))
        =f(\sqrt{}{9-\mp@subsup{x}{}{2}})
        =(\sqrt{}{9-\mp@subsup{x}{}{2}}\mp@subsup{)}{}{2}-9
        =9-\mp@subsup{x}{}{2}-9
            = 9- 秋-
The domain of f\circg is restricted to the x-values in the domain of g for which
g(x) is in the domain of f. The domain of f(x)=\mp@subsup{x}{}{2}-9\mathrm{ is the set of all real}
g(x) is in the domain of f. The domain of f(x)=\mp@subsup{x}{}{2}-9\mathrm{ is the set of all real }
Numbers, which includes all real values of g. So, the 
```

$\sqrt{ }$ Checkpoint
Find the domain of $f \circ g$ for the functions $f(x)=\sqrt{x}$ and $g(x)=x^{2}+4$.

Graphical Solution

From the graph, you can determine that the domain of $f \circ g$ is $[-3,3]$.

```
Find the domain of f\circg\mathrm{ for the functions }f(x)=\sqrt{}{x}\mathrm{ and }g(x)=\mp@subsup{x}{}{2}+4\mathrm{ ,}
```


Side-By-Side Examples

Throughout the text, we present solutions to many examples from multiple perspectives-algebraically, graphically, and numerically. The side-by-side format of this pedagogical feature helps you to see that a problem can be solved in more than one way and to see that different methods yield the same result. The side-by-side format also addresses many different learning styles.

Remarks

These hints and tips reinforce or expand upon concepts, help you learn how to study mathematics, caution you about common errors, address special cases, or show alternative or additional steps to a solution of an example.

Checkpoints

Accompanying every example, the Checkpoint problems encourage immediate practice and check your understanding of the concepts presented in the example. View and listen to worked-out solutions of the Checkpoint problems in English or Spanish at LarsonPrecalculus.com.

Technology

The technology feature gives suggestions for effectively using tools such as calculators, graphing utilities, and spreadsheet programs to help deepen your understanding of concepts, ease lengthy calculations, and provide alternate solution methods for verifying answers obtained by hand.

Historical Notes

These notes provide helpful information regarding famous mathematicians and their work.

Algebra of Calculus

Throughout the text, special emphasis is given to the algebraic techniques used in calculus. Algebra of Calculus examples and exercises are integrated throughout the text and are identified by the symbol f.

Summarize

The Summarize feature at the end of each section helps you organize the lesson's key concepts into a concise summary, providing you with a valuable study tool.

Vocabulary Exercises

The vocabulary exercises appear at the beginning of the exercise set for each section. These problems help you review previously learned vocabulary terms that you will use in solving the section exercises.

TECHNOLOGY Use a graphing utility to check the result of Example 2. To do this, enter

$$
\mathrm{Y} 1=-(\sin (\mathrm{X}))^{3}
$$

and

$$
\begin{aligned}
Y 2= & \sin (X)(\cos (X))^{2} \\
& -\sin (X) .
\end{aligned}
$$

Select the line style for Y1 and the path style for Y 2 , then graph both equations in the same viewing window. The two graphs appear to coincide, so it is reasonable to assume that their expressions are equivalent. Note that the actual equivalence of the expressions can only be verified algebraically, as in Example 2. This graphical approach is only to check your work.

HOW DO YOU SEE IT? The graph represents the height h of a projectile after t seconds.

(a) Explain why h is a function of t.
(b) Approximate the height of the projectile after 0.5 second and after 1.25 seconds.
(c) Approximate the domain of h.
(d) Is t a function of h ? Explain.

How Do You See It?

The How Do You See It? feature in each section presents a real-life exercise that you will solve by visual inspection using the concepts learned in the lesson. This exercise is excellent for classroom discussion or test preparation.

Project

The projects at the end of selected sections involve in-depth applied exercises in which you will work with large, real-life data sets, often creating or analyzing models. These projects are offered online at LarsonPrecalculus.com.

Chapter Summary

The Chapter Summary includes explanations and examples of the objectives taught in each chapter.

Annotated Instructor's Edition / ISBN-13: 978-1-337-27910-9

This is the complete student text plus point-of-use annotations for the instructor, including extra projects, classroom activities, teaching strategies, and additional examples. Answers to even-numbered text exercises, Vocabulary Checks, and Explorations are also provided.

Complete Solutions Manual (on instructor companion site)

This manual contains solutions to all exercises from the text, including Chapter Review Exercises and Chapter Tests, and Practice Tests with solutions.

Cengage Learning Testing Powered by Cognero (login.cengage.com)

CLT is a flexible online system that allows you to author, edit, and manage test bank content; create multiple test versions in an instant; and deliver tests from your LMS, your classroom, or wherever you want. This is available online via www.cengage.com/login.

Instructor Companion Site

Everything you need for your course in one place! This collection of book-specific lecture and class tools is available online via www.cengage.com/login. Access and download PowerPoint ${ }^{\circledR}$ presentations, images, the instructor's manual, and more.

Test Bank (on instructor companion site)

This contains text-specific multiple-choice and free response test forms.

Lesson Plans (on instructor companion site)

This manual provides suggestions for activities and lessons with notes on time allotment in order to ensure timeliness and efficiency during class.

MindTap for Mathematics

MindTap ${ }^{\circledR}$ is the digital learning solution that helps instructors engage and transform today's students into critical thinkers. Through paths of dynamic assignments and applications that you can personalize, real-time course analytics and an accessible reader, MindTap helps you turn cookie cutter into cutting edge, apathy into engagement, and memorizers into higher-level thinkers.

Enhanced WebAssign ${ }^{\circledR}$ WebAssign

Exclusively from Cengage Learning, Enhanced WebAssign combines the exceptional mathematics content that you know and love with the most powerful online homework solution, WebAssign. Enhanced WebAssign engages students with immediate feedback, rich tutorial content, and interactive, fully customizable e-books (YouBook), helping students to develop a deeper conceptual understanding of their subject matter. Quick Prep and Just In Time exercises provide opportunities for students to review prerequisite skills and content, both at the start of the course and at the beginning of each section. Flexible assignment options give instructors the ability to release assignments conditionally on the basis of students' prerequisite assignment scores. Visit us at www.cengage.com/ewa to learn more.

Student Study and Solutions Manual / ISBN-13: 978-1-337-27918-5
This guide offers step-by-step solutions for all odd-numbered text exercises, Chapter Tests, and Cumulative Tests. It also contains Practice Tests.

Note-Taking Guide / ISBN-13: 978-1-337-27929-1
This is an innovative study aid, in the form of a notebook organizer, that helps students develop a section-by-section summary of key concepts.

CengageBrain.com

To access additional course materials, please visit www.cengagebrain.com. At the CengageBrain.com home page, search for the ISBN of your title (from the back cover of your book) using the search box at the top of the page. This will take you to the product page where these resources can be found.

MindTap for Mathematics

MindTap ${ }^{\circledR}$ provides you with the tools you need to better manage your limited time-you can complete assignments whenever and wherever you are ready to learn with course material specially customized for you by your instructor and streamlined in one proven, easy-to-use interface. With an array of tools and apps-from note taking to flashcards-you'll get a true understanding of course concepts, helping you to achieve better grades and setting the groundwork for your future courses. This access code entitles you to one term of usage.

Enhanced WebAssign ${ }^{(8)}$ WebAssign

Enhanced WebAssign (assigned by the instructor) provides you with instant feedback on homework assignments. This online homework system is easy to use and includes helpful links to textbook sections, video examples, and problem-specific tutorials.

I would like to thank the many people who have helped me prepare the text and the supplements package. Their encouragement, criticisms, and suggestions have been invaluable.

Thank you to all of the instructors who took the time to review the changes in this edition and to provide suggestions for improving it. Without your help, this book would not be possible.

Reviewers of the Fourth Edition

Gurdial Arora, Xavier University of Louisiana
Russell C. Chappell, Twinsburg High School, Ohio
Darlene Martin, Lawson State Community College
John Fellers, North Allegheny School District
Professor Steven Sikes, Collin College
Ann Slate, Surry Community College
John Elias, Glenda Dawson High School
Kathy Wood, Lansing Catholic High School
Darin Bauguess, Surry Community College
Brianna Kurtz, Daytona State College

Reviewers of the Previous Editions

Timothy Andrew Brown, South Georgia College; Blair E. Caboot, Keystone College; Shannon Cornell, Amarillo College; Gayla Dance, Millsaps College; Paul Finster, El Paso Community College; Paul A. Flasch, Pima Community College West Campus; Vadas Gintautas, Chatham University; Lorraine A. Hughes, Mississippi State University; Shu-Jen Huang, University of Florida; Renyetta Johnson, East Mississippi Community College; George Keihany, Fort Valley State University; Mulatu Lemma, Savannah State University; William Mays Jr., Salem Community College; Marcella Melby, University of Minnesota; Jonathan Prewett, University of Wyoming; Denise Reid, Valdosta State University; David L. Sonnier, Lyon College; David H. Tseng, Miami Dade College—Kendall Campus; Kimberly Walters, Mississippi State University; Richard Weil, Brown College; Solomon Willis, Cleveland Community College; Bradley R. Young, Darton College

My thanks to Robert Hostetler, The Behrend College, The Pennsylvania State University, and David Heyd, The Behrend College, The Pennsylvania State University, for their significant contributions to previous editions of this text.

I would also like to thank the staff at Larson Texts, Inc. who assisted with proofreading the manuscript, preparing and proofreading the art package, and checking and typesetting the supplements.

On a personal level, I am grateful to my spouse, Deanna Gilbert Larson, for her love, patience, and support. Also, a special thanks goes to R. Scott O'Neil. If you have suggestions for improving this text, please feel free to write to me. Over the past two decades, I have received many useful comments from both instructors and students, and I value these comments very highly.

Ron Larson, Ph.D. Professor of Mathematics Penn State University www.RonLarson.com

PRECALC with LIMITS with 4E Calchiat ${ }^{\oplus}$ and Calcyiew ${ }^{\text {® }}$

1 Functions and Their Graphs

1.1 Rectangular Coordinates
1.2 Graphs of Equations
1.3 Linear Equations in Two Variables
1.4 Functions
1.5 Analyzing Graphs of Functions
1.6 A Library of Parent Functions
1.7 Transformations of Functions
1.8 Combinations of Functions: Composite Functions
1.9 Inverse Functions
1.10 Mathematical Modeling and Variation

Snowstorm (Exercise 47, page 66)

Average Speed (Example 7, page 54)

Bacteria (Example 8, page 80)

Alternative-Fuel Stations
(Example 10, page 42)

1.1 Rectangular Coordinates

The Cartesian plane can help you visualize relationships between two variables. For example, in Exercise 37 on page 9, given how far north and west one city is from another, plotting points to represent the cities can help you visualize these distances and determine the flying distance between the cities.

Figure 1.3

- Plot points in the Cartesian plane.
- Use the Distance Formula to find the distance between two points.
- Use the Midpoint Formula to find the midpoint of a line segment.
- Use a coordinate plane to model and solve real-life problems.

The Cartesian Plane

Just as you can represent real numbers by points on a real number line, you can represent ordered pairs of real numbers by points in a plane called the rectangular coordinate system, or the Cartesian plane, named after the French mathematician René Descartes (1596-1650).

Two real number lines intersecting at right angles form the Cartesian plane, as shown in Figure 1.1. The horizontal real number line is usually called the \boldsymbol{x}-axis, and the vertical real number line is usually called the \boldsymbol{y}-axis. The point of intersection of these two axes is the origin, and the two axes divide the plane into four quadrants.

Figure 1.1

Figure 1.2

Each point in the plane corresponds to an ordered pair (x, y) of real numbers x and y, called coordinates of the point. The \boldsymbol{x}-coordinate represents the directed distance from the y-axis to the point, and the \boldsymbol{y}-coordinate represents the directed distance from the x-axis to the point, as shown in Figure 1.2.

The notation (x, y) denotes both a point in the plane and an open interval on the real number line. The context will tell you which meaning is intended.

EXAMPLE 1 Plotting Points in the Cartesian Plane

Plot the points $(-1,2),(3,4),(0,0),(3,0)$, and $(-2,-3)$.
Solution To plot the point $(-1,2)$, imagine a vertical line through -1 on the x-axis and a horizontal line through 2 on the y-axis. The intersection of these two lines is the point $(-1,2)$. Plot the other four points in a similar way, as shown in Figure 1.3.
$\sqrt{ }$ Checkpoint -1$))$ Audio-video solution in English \& Spanish at LarsonPrecalculus.com
Plot the points $(-3,2),(4,-2),(3,1),(0,-2)$, and $(-1,-2)$.

The beauty of a rectangular coordinate system is that it allows you to see relationships between two variables．It would be difficult to overestimate the importance of Descartes＇s introduction of coordinates in the plane．Today，his ideas are in common use in virtually every scientific and business－related field．

EXAMPLE 2 Sketching a Scatter Plot

DATA	Year，t	Subscribers，N
	2005	207.9
	2006	233.0
	2007	255.4
	2008	270.3
	2009	285.6
	2010	296.3
	2011	316.0
	2012	326.5
	2013	335.7
	2014	355.4

The table shows the numbers N（in millions）of subscribers to a cellular telecommunication service in the United States from 2005 through 2014，where t represents the year．Sketch a scatter plot of the data．（Source：CTIA－The Wireless Association）

Solution To sketch a scatter plot of the data shown in the table，represent each pair of values by an ordered pair (t, N) and plot the resulting points．For example，let $(2005,207.9)$ represent the first pair of values．Note that in the scatter plot below，the break in the t－axis indicates omission of the years before 2005，and the break in the N －axis indicates omission of the numbers less than 150 million．

$\sqrt{ }$ Checkpoint -1$)$ ）Audio－video solution in English \＆Spanish at LarsonPrecalculus．com

The table shows the numbers N（in thousands）of cellular telecommunication service employees in the United States from 2005 through 2014，where t represents the year． Sketch a scatter plot of the data．（Source：CTIA－The Wireless Association）

$\stackrel{\Gamma}{\text { DATA }}$	t	N
E	2005	233.1
－	2006	253.8
$\frac{\bar{E}}{\frac{0}{5}}$	2007	266.8
运	2008	268.5
	2009	249.2
$\stackrel{3}{4}$	2010	250.4
\％	2011	238.1
践	2012	230.1
弱	2013	230.4
	2014	232.2

In Example 2，you could let $t=1$ represent the year 2005．In that case，there would not be a break in the horizontal axis，and the labels 1 through 10 （instead of 2005 through 2014）would be on the tick marks．

Figure 1.4

Figure 1.5

The Pythagorean Theorem and The Distance Formula

The Pythagorean Theorem is used extensively throughout this course.

Pythagorean Theorem

For a right triangle with hypotenuse length c and sides lengths a and b, you have $a^{2}+b^{2}=c^{2}$, as shown in Figure 1.4. (The converse is also true. That is, if $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.)

Using the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, you can form a right triangle, as shown in Figure 1.5. The length of the hypotenuse of the right triangle is the distance d between the two points. The length of the vertical side of the triangle is $\left|y_{2}-y_{1}\right|$ and the length of the horizontal side is $\left|x_{2}-x_{1}\right|$. By the Pythagorean Theorem,

$$
\begin{aligned}
d^{2} & =\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2} \\
d & =\sqrt{\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}} \\
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
\end{aligned}
$$

This result is the Distance Formula.

The Distance Formula

The distance d between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

EXAMPLE 3 Finding a Distance

Find the distance between the points $(-2,1)$ and $(3,4)$.

Algebraic Solution

Let $\left(x_{1}, y_{1}\right)=(-2,1)$ and $\left(x_{2}, y_{2}\right)=(3,4)$. Then apply the Distance Formula.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
& =\sqrt{[3-(-2)]^{2}+(4-1)^{2}} & & \text { Substitute for } x_{1}, y_{1}, x_{2}, \text { and } y_{2} . \\
& =\sqrt{(5)^{2}+(3)^{2}} & & \text { Simplify. } \\
& =\sqrt{34} & & \text { Simplify. } \\
& \approx 5.83 & & \text { Use a calculator. }
\end{aligned}
$$

So, the distance between the points is about 5.83 units.

Check

$$
\begin{aligned}
d^{2} & \stackrel{?}{=} 5^{2}+3^{2} & & \text { Pythagorean Theorem } \\
(\sqrt{34})^{2} & \stackrel{?}{=} 5^{2}+3^{2} & & \text { Substitute for } d . \\
34 & =34 & & \text { Distance checks. } \checkmark
\end{aligned}
$$

Graphical Solution

Use centimeter graph paper to plot the points $A(-2,1)$ and $B(3,4)$. Carefully sketch the line segment from A to B. Then use a centimeter ruler to measure the length of the segment.

The line segment measures about 5.8 centimeters. So, the distance between the points is about 5.8 units.

Checkpoint

 Audio-video solution in English \& Spanish at LarsonPrecalculus.comFind the distance between the points $(3,1)$ and $(-3,0)$.

Figure 1.6
$>$ ALGEBRA HELP To review - the techniques for evaluating a

- radical, see Appendix A.2.

EXAMPLE 4 Verifying a Right Triangle

Show that the points

$$
\begin{equation*}
(2,1), \quad(4,0), \quad \text { and } \tag{5,7}
\end{equation*}
$$

are vertices of a right triangle.
Solution The three points are plotted in Figure 1.6. Using the Distance Formula, the lengths of the three sides are

$$
\begin{aligned}
& d_{1}=\sqrt{(5-2)^{2}+(7-1)^{2}}=\sqrt{9+36}=\sqrt{45} \\
& d_{2}=\sqrt{(4-2)^{2}+(0-1)^{2}}=\sqrt{4+1}=\sqrt{5}, \text { and } \\
& d_{3}=\sqrt{(5-4)^{2}+(7-0)^{2}}=\sqrt{1+49}=\sqrt{50}
\end{aligned}
$$

Because $\left(d_{1}\right)^{2}+\left(d_{2}\right)^{2}=45+5=50=\left(d_{3}\right)^{2}$, you can conclude by the converse of the Pythagorean Theorem that the triangle is a right triangle.

$\sqrt{ }$ Checkpoint $-J)$) Audio-video solution in English \& Spanish at LarsonPrecalculus.com

Show that the points $(2,-1),(5,5)$, and $(6,-3)$ are vertices of a right triangle.

The Midpoint Formula

To find the midpoint of the line segment that joins two points in a coordinate plane, find the average values of the respective coordinates of the two endpoints using the Midpoint Formula.

The Midpoint Formula

The midpoint of the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\text { Midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

For a proof of the Midpoint Formula, see Proofs in Mathematics on page 110.

EXAMPLE 5 Finding the Midpoint of a Line Segment

Find the midpoint of the line segment joining the points

$$
(-5,-3) \quad \text { and } \quad(9,3)
$$

Solution Let $\left(x_{1}, y_{1}\right)=(-5,-3)$ and $\left(x_{2}, y_{2}\right)=(9,3)$.

$$
\begin{aligned}
\text { Midpoint } & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & & \text { Midpoint Formula } \\
& =\left(\frac{-5+9}{2}, \frac{-3+3}{2}\right) & & \text { Substitute for } x_{1}, y_{1}, x_{2}, \text { and } y_{2} . \\
& =(2,0) & & \text { Simplify. }
\end{aligned}
$$

The midpoint of the line segment is $(2,0)$, as shown in Figure 1.7.
Checkpoint $\sqrt{ }$))) Audio-video solution in English \& Spanish at LarsonPrecalculus.com
Find the midpoint of the line segment joining the points

$$
(-2,8) \text { and }(4,-10)
$$

Figure 1.8

Figure 1.9

Applications

EXAMPLE 6 Finding the Length of a Pass

A football quarterback throws a pass from the 28 -yard line, 40 yards from the sideline. A wide receiver catches the pass on the 5-yard line, 20 yards from the same sideline, as shown in Figure 1.8. How long is the pass?

Solution The length of the pass is the distance between the points $(40,28)$ and $(20,5)$.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
& =\sqrt{(40-20)^{2}+(28-5)^{2}} & & \text { Substitute for } x_{1}, y_{1}, x_{2}, \text { and } y_{2} . \\
& =\sqrt{20^{2}+23^{2}} & & \text { Simplify. } \\
& =\sqrt{400+529} & & \text { Simplify. } \\
& =\sqrt{929} & & \text { Simplify. } \\
& \approx 30 & & \text { Use a calculator. }
\end{aligned}
$$

So, the pass is about 30 yards long.

Checkpoint -1)) Audio-video solution in English \& Spanish at LarsonPrecalculus.com

A football quarterback throws a pass from the 10-yard line, 10 yards from the sideline. A wide receiver catches the pass on the 32 -yard line, 25 yards from the same sideline. How long is the pass?

In Example 6, the scale along the goal line does not normally appear on a football field. However, when you use coordinate geometry to solve real-life problems, you are free to place the coordinate system in any way that helps you solve the problem.

EXAMPLE 7 Estimating Annual Sales

Starbucks Corporation had annual sales of approximately $\$ 13.3$ billion in 2012 and $\$ 16.4$ billion in 2014. Without knowing any additional information, what would you estimate the 2013 sales to have been? (Source: Starbucks Corporation)
Solution Assuming that sales followed a linear pattern, you can estimate the 2013 sales by finding the midpoint of the line segment connecting the points $(2012,13.3)$ and $(2014,16.4)$.

$$
\begin{array}{rlr}
\text { Midpoint } & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & \text { Midpoint Formula } \\
& =\left(\frac{2012+2014}{2}, \frac{13.3+16.4}{2}\right) & \\
\text { Substitute for } x_{1}, x_{2}, y_{1} \text {, and } y_{2} . \\
& =(2013,14.85) &
\end{array}
$$

So, you would estimate the 2013 sales to have been about $\$ 14.85$ billion, as shown in Figure 1.9. (The actual 2013 sales were about $\$ 14.89$ billion.)
$\sqrt{ }$ Checkpoint $-\sqrt{\prime}))$ Audio-video solution in English \& Spanish at LarsonPrecalculus.com
Yahoo! Inc. had annual revenues of approximately $\$ 5.0$ billon in 2012 and $\$ 4.6$ billion in 2014. Without knowing any additional information, what would you estimate the 2013 revenue to have been? (Source: Yahoo! Inc.)

Much of computer graphics, including this computer-generated tessellation, consists of transformations of points in a coordinate plane. Example 8 illustrates one type of transformation called a translation. Other types include reflections, rotations, and stretches.

EXAMPLE 8 Translating Points in the Plane

See LarsonPrecalculus.com for an interactive version of this type of example.
The triangle in Figure 1.10 has vertices at the points $(-1,2),(1,-2)$, and $(2,3)$. Shift the triangle three units to the right and two units up and find the coordinates of the vertices of the shifted triangle shown in Figure 1.11.

Figure 1.10

Figure 1.11
Solution To shift the vertices three units to the right, add 3 to each of the x-coordinates. To shift the vertices two units up, add 2 to each of the y-coordinates.

Original Point	Translated Point
$(-1,2)$	$(-1+3,2+2)=(2,4)$
$(1,-2)$	$(1+3,-2+2)=(4,0)$
$(2,3)$	$(2+3,3+2)=(5,5)$

$\sqrt{ }$ Checkpoint $-\sqrt{\prime})$) Audio-video solution in English \& Spanish at LarsonPrecalculus.com

Find the coordinates of the vertices of the parallelogram shown after translating it two units to the left and four units down.

The figures in Example 8 were not really essential to the solution. Nevertheless, you should develop the habit of including sketches with your solutions because they serve as useful problem-solving tools.

Summarize (Section 1.1)

1. Describe the Cartesian plane (page 2). For examples of plotting points in the Cartesian plane, see Examples 1 and 2.
2. State the Distance Formula (page 4). For examples of using the Distance Formula to find the distance between two points, see Examples 3 and 4.
3. State the Midpoint Formula (page 5). For an example of using the Midpoint Formula to find the midpoint of a line segment, see Example 5.
4. Describe examples of how to use a coordinate plane to model and solve real-life problems (pages 6 and 7, Examples 6-8).

1.1 Exercises

See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Vocabulary: Fill in the blanks.

1. An ordered pair of real numbers can be represented in a plane called the rectangular coordinate system or the \qquad plane.
2. The x - and y-axes divide the coordinate plane into four \qquad .
3. The \qquad
\qquad is derived from the Pythagorean Theorem.
4. Finding the average values of the respective coordinates of the two endpoints of a line segment in a coordinate plane is also known as using the \qquad .

Skills and Applications

5. $(2,4),(3,-1),(-6,2),(-4,0),(-1,-8),(1.5,-3.5)$
6. $(1,-5),(-2,-7),(3,3),(-2,4),(0,5),\left(\frac{2}{3}, \frac{5}{2}\right)$

Finding the Coordinates of a Point In Exercises 7

 and 8 , find the coordinates of the point.7. The point is three units to the left of the y-axis and four units above the x-axis.
8. The point is on the x-axis and 12 units to the left of the y-axis.

Determining Quadrant(s) for a Point In Exercises 9-14, determine the quadrant(s) in which (x, y) could be located.
9. $x>0$ and $y<0$
10. $x<0$ and $y<0$
11. $x=-4$ and $y>0$
12. $x<0$ and $y=7$
13. $x+y=0, x \neq 0, y \neq 0$
14. $x y>0$

Finding a Distance In Exercises 17-22, find the distance between the points.
16. The table shows the lowest temperature on record y (in degrees Fahrenheit) in Duluth, Minnesota, for each month x, where $x=1$ represents January. (Source: NOAA)

DATA	Month, x	Temperature, y
E	1	-39
$\stackrel{0}{0}$	2	-39
碝	3	-29
\%	4	-5
$\left.\begin{aligned} & 0.0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	5	17
$\stackrel{\square}{\square}$	6	27
$\stackrel{\text { ® }}{ }$	7	35
気	8	32
\sim	9	22
	10	8
	11	-23
	12	-34

Sketching a Scatter Plot In Exercises 15 and 16, sketch a scatter plot of the data shown in the table.
15. The table shows the number y of Wal-Mart stores for each year x from 2008 through 2014. (Source: Wal-Mart Stores, Inc.)

DATA	Year, x	Number of Stores, y
	2008	7720
	2009	8416
	2010	8970
	2011	10,130
	2012	10,773
	2013	10,942
	2014	11,453

17. $(-2,6),(3,-6)$
18. $(8,5),(0,20)$
19. $(1,4),(-5,-1)$
20. $(1,3),(3,-2)$
21. $\left(\frac{1}{2}, \frac{4}{3}\right),(2,-1)$
22. $(9.5,-2.6),(-3.9,8.2)$

Verifying a Right Triangle In Exercises 23 and 24, (a) find the length of each side of the right triangle, and (b) show that these lengths satisfy the Pythagorean Theorem.
23.

24.

Verifying a Polygon In Exercises 25-28, show that the points form the vertices of the polygon.
25. Right triangle: $(4,0),(2,1),(-1,-5)$
26. Right triangle: $(-1,3),(3,5),(5,1)$
27. Isosceles triangle: $(1,-3),(3,2),(-2,4)$
28. Isosceles triangle: $(2,3),(4,9),(-2,7)$

Plotting, Distance, and Midpoint In Exercises 29-36, (a) plot the points, (b) find the distance between the points, and (c) find the midpoint of the line segment joining the points.
29. $(6,-3),(6,5)$
31. $(1,1),(9,7)$
33. $(-1,2),(5,4)$
35. $(-16.8,12.3),(5.6,4.9)$
30. $(1,4),(8,4)$
32. $(1,12),(6,0)$
34. $(2,10),(10,2)$
36. $\left(\frac{1}{2}, 1\right),\left(-\frac{5}{2}, \frac{4}{3}\right)$
-•37. Flying Distance

- An airplane flies from
- Naples, Italy, in a
- straight line to Rome,
- Italy, which is
- 120 kilometers north
- and 150 kilometers
- west of Naples. How
- far does the plane fly?

38. Sports A soccer player passes the ball from a point that is 18 yards from the endline and 12 yards from the sideline. A teammate who is 42 yards from the same endline and 50 yards from the same sideline receives the pass. (See figure.) How long is the pass?

39. Sales The Coca-Cola Company had sales of $\$ 35,123$ million in 2010 and $\$ 45,998$ million in 2014. Use the Midpoint Formula to estimate the sales in 2012. Assume that the sales followed a linear pattern. (Source: The Coca-Cola Company)
40. Revenue per Share The revenue per share for Twitter, Inc. was $\$ 1.17$ in 2013 and $\$ 3.25$ in 2015. Use the Midpoint Formula to estimate the revenue per share in 2014. Assume that the revenue per share followed a linear pattern. (Source: Twitter, Inc.)

Translating Points in the Plane In Exercises 41-44, find the coordinates of the vertices of the polygon after the given translation to a new position in the plane.
41.

42.

43. Original coordinates of vertices: $(-7,-2),(-2,2)$, $(-2,-4),(-7,-4)$
Shift: eight units up, four units to the right
44. Original coordinates of vertices: $(5,8),(3,6),(7,6)$

Shift: 6 units down, 10 units to the left
45. Minimum Wage Use the graph below, which shows the minimum wages in the United States (in dollars) from 1950 through 2015. (Source: U.S. Department of Labor)

(a) Which decade shows the greatest increase in the minimum wage?
(b) Approximate the percent increases in the minimum wage from 1985 to 2000 and from 2000 to 2015.
(c) Use the percent increase from 2000 to 2015 to predict the minimum wage in 2030.
(d) Do you believe that your prediction in part (c) is reasonable? Explain.
46. Exam Scores The table shows the mathematics entrance test scores x and the final examination scores y in an algebra course for a sample of 10 students.

x	22	29	35	40	44	48	53	58	65	76
y	53	74	57	66	79	90	76	93	83	99

(a) Sketch a scatter plot of the data.
(b) Find the entrance test score of any student with a final exam score in the 80s.
(c) Does a higher entrance test score imply a higher final exam score? Explain.

[^0]: App Store is a service mark of Apple Inc. Google Play is a trademark of Google Inc. QR Code is a registered trademark of Denso Wave Incorporated.

